Impressum | English | Start
 






 

Pressemitteilung - [ 18.01.2013 ]


Kleine Veränderung, große Wirkung – Halogenbindungen in der Medikamentenforschung
Halogenbindungen werden seit einiger Zeit in der Kristall-Synthese, in der Werkstoffforschung und in der Nanotechnologie eingesetzt. Forscher am Heidelberger Institut für Theoretische Studien (HITS) und an der tschechischen Akademie der Wissenschaften in Prag haben nun ein neues Verfahren zur Anwendung von Halogenbindungen in der Medikamentenforschung entwickelt.


Halogenchemie wird seit fast 70 Jahren von Medizinchemikern verwendet. Bisher wurden Halogene zur Optimierung sogenannter ADMET-Eigenschaften herangezogen. Die englische Abkürzung steht für Absorption (Aufnahme in die Blutbahn), Distribution (Verteilung im Organismus), Metabolism (Verstoffwechselung), Excretion (Ausscheidung) und Toxicity (Toxizität). Halogene verbessern die orale Aufnahme und erleichtern es potenziellen Medikamenten, biologische Barrieren zu passieren. Sie helfen, kleine hydrophobe Hohlräume in vielen Zielproteinen zu füllen, und verlängern die Wirkungsdauer des Arzneimittels. Kurz: Sie machen vielversprechende chemische Verbindungen zu potenziellen Medikamenten. Jedoch wurden Interaktionen, an denen Halogenatome beteiligt sind, in der vorklinischen Medikamentenentwicklung bisher weitgehend vernachlässigt.

Forscher aus den Bereichen Quantenchemie und strukturbasierte Medikamentenentwicklung in Heidelberg und Prag haben nun ein neues Verfahren entwickelt, um Halogenverbindungen in der computergestützten medizinischen Chemie und für Anwendungen in der Medikamentenforschung zu nutzen. An der Studie unter der Leitung von Dr. Agnieszka Bronowska vom Heidelberger Institut für Theoreatische Studien (HITS) waren Forscher der Akademie der Wissenschaften der Tschechischen Republik beteiligt. Die Ergebnisse wurden jetzt in "Chemical Communications" veröffentlicht.

Die meisten Halogene (außer Fluor) haben einzigartige Eigenschaften, mit denen sie Interaktionen zwischen potenziellen Medikamenten und ihren Zielproteinen stabilisieren können. Diese Eigenschaften sind quantenchemischen Ursprungs: Sie beruhen auf der Anisotropie, also der Richtungsabhängigkeit der Ladungsverteilung um das Halogenatom, wenn es an ein Substrat bindet, das dem Atom Elektronen entzieht. Überraschenderweise haben Halogene trotz negativer Ladung Regionen, die weiterhin eine positive Ladung aufweisen (Abbildung, linke Seite). Diese Regionen werden als Sigma-Löcher bezeichnet und sind für den gerichteten und stabilisierenden Charakter von Halogenbindungen mit anderen elektronegativen Atomen wie Sauerstoff oder Stickstoff verantwortlich.
Wenn Sigma-Löcher bei der Vorhersage der Struktur und der Energetik von Medikament-Proteinkomplexen nicht berücksichtigt werden, kann das zu Fehlern führen, die die Entwicklung eines Medikaments scheitern lassen.


Linke Seite: Ladungsverteilung rund um das Brombenzolmolekül. Regionen mit negativem elektrostatischem Potenzial sind blau markiert, positiv geladene Regionen grau. Die graue Scheibe im Vordergrund markiert das Sigma-Loch.
Rechte Seite: Überlagerung der vorhergesagten Bindungsstellen des K17-Inhibitors der Kaseinkinase 2 (PDB-Code 2OXY) mit expliziten Sigma-Löchern (rot) und ohne (blau) und Vergleich mit der Kristallstruktur (grau). (Bild: HITS)

Beim neuen Verfahren werden die positiv geladenen Sigma-Löcher mit einem masselosen, geladenen Pseudo-Atom angenähert. Dieses wird als „explizites Sigma-Loch“ bezeichnet. Dadurch konnten Agnieszka Bronowska und ihre Kollegen einen quantenchemischen Effekt in schnellere (und viel ungenauere) computergestützte Analyseverfahren in der strukturbasierten Medikamentenentwicklung integrieren. „Wir haben fast einhundert Komplexe aus medizinisch relevanten Proteinen und halogenierten Molekülen getestet“, sagt die Forscherin. „Die Ergebnisse zeigten eine signifikante Verbesserung der Beschreibung solcher Komplexe nach der Einführung des expliziten Sigma-Lochs.“

Das neue Verfahren wird bereits von Forschungsgruppen in Tschechien, Großbritannien und den USA eingesetzt, um neuartige Verbindungen zur Behandlung von chemotherapieresistenten Krebsarten, ansteckenden Krankheiten und Alzheimer zu entwickeln.


Wissenschaftliche Publikation:
Plugging the explicit σ-holes in molecular docking. Michal Kolár, Pavel Hobza and Agnieszka K. Bronowska. Chemical Communications, 2013, 49 (10), 981 - 983.
DOI: 10.1039/C2CC37584B


Pressekontakt:
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49-6221-533245
Peter.saueressig@h-its.org
www.h-its.org

Wissenschaftlicher Kontakt:
Dr. Agnieszka Bronowska
Molecular Biomechanics Group (MBM)
Heidelberg Institute for Theoretical Studies (HITS)
Agnieszka.bronowska@h-its.org






HITS:

Das Heidelberger Institut für Theoretische Studien (HITS gGmbH) ist ein privates, gemeinnütziges Forschungsinstitut. Es ging am 01.01.2010 durch Namensänderung aus  der EML Research gGmbH hervor und setzt deren Forschungsaktivitäten auf einer breiteren Grundlage fort. Als Forschungseinrichtung der Klaus Tschira Stiftung (www.klaus-tschira-stiftung.de) betreibt HITS Grundlagenforschung in verschiedenen Bereichen der Naturwissenschaften, Mathematik und Informatik. Der methodische Schwerpunkt liegt bei der Theorie- und Modellbildung, wobei rechnergestützte Simulation und Datenerschließung eine zentrale Rolle spielen. HITS ist auf insgesamt ca. zehn Forschungsgruppen ausgelegt, die sich mit so verschiedenen Gebieten wie theoretischer Biochemie, molekularer Biomechanik, wissenschaftlichen Datenbanken, Computerlinguistik, theoretischer Astrophysik, medizinischer Statistik, Informatik u.ä. befassen sollen.
Geschäftsführer der HITS gGmbH sind Dr. h.c. Klaus Tschira und Prof. Dr.-Ing. Andreas Reuter.


Dr. Peter Saueressig
HITS gGmbH
Schloss-Wolfsbrunnenweg 35
69118 Heidelberg
Telefon: +49 (0)6221 - 533 - 245
Fax: +49 (0)6221 - 533 - 298
Email: peter.saueressig@h-its.org