
Semantic Author Name Disambiguation
with Word Embeddings

Mark-Christoph Müller

Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
mark-christoph.mueller@h-its.org

Abstract. We present a supervised machine learning AND system which
tackles semantic similarity between publication titles by means of word
embeddings. Word embeddings are integrated as external components,
which keeps the model small and efficient, while allowing for easy ex-
tensibility and domain adaptation. Initial experiments show that word
embeddings can improve the Recall and F score of the binary classifica-
tion sub-task of AND. Results for the clustering sub-task are less clear,
but also promising and overall show the feasibility of the approach.

Keywords: Author name disambiguation · Semantic similarity · Word embed-
dings · Classification · Clustering · Machine learning · Deep Learning

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-67008-9 24

1 Introduction

Author name ambiguity can be observed in collections of (scientific) publica-
tions when several authors bear, or publish under, the same name. It is caused
by the natural limitation of available person names, and by the fact that some
names are much more frequent than others. It is further aggravated by the com-
mon publishing practice of initializing authors’ first names. Author name disam-
biguation (AND) is the task of deciding, for a given pair of publications with
the same author name, whether that name refers to the same author individual
[4, 18]. AND is a multi-facetted task, which comprises 1) content similarity, 2)
co-author similarity, and 3) publication meta data similarity. In this paper, we
present a supervised machine learning system which handles these three facets in
a unified and extensible way. In particular, our system uses word embeddings
(WEs) to deal with the content similarity facet of AND. WEs are employed to
detect semantic content similarity or relatedness between pairs of publication ti-
tles, beyond surface-based string matching. To give just one illustrative example
which exhibits neither title string nor co-author overlap, consider the following
pair of publications from our data set.

A. Verma, A. Kumar (2004): Articulatory class based spectral envelope representation for

voice fonts.
A. Karmakar, A. Kumar, R. K. Patney (2006): A Multiresolution Model of Auditory Excita-

tion Pattern and Its Application to Objective Evaluation of Perceived Speech Quality.



Here, the author name A. Kumar does refer to the same person, but the only
hint is in the semantic relatedness of the underlined tokens.

WEs have recently become popular in Deep Learning approaches to natural
language processing (NLP). Full-blown Deep Learning models can take long
to train and are technically demanding, often requiring specialized hardware.
These requirements limit their practical applicability for digital libraries or online
bibliographies. Our approach, in contrast, avoids these problems by 1) using
only a simple machine learning model, which is fast and easy to train, and 2)
keeping the WEs separate from the model. This way, the WEs are trained in a
one-off effort, and they can easily be re-used and combined, even as the model
architecture gets more complex. The rest of this paper is structured as follows:
Section 2 provides a brief definition of AND and outlines how we cast AND as
binary classification followed by clustering. Section 3 introduces the concept of
WEs for the computation of semantic similarity and then provides a detailed
description of our system. Section 4 describes and discusses our experiments,
and Section 5 briefly reviews some related work. The paper concludes in Section
6.

2 Definition of AND

AND deals with authorship records [3], which consist of an author name and some
representation of the publication content, co-authors, and other meta data. Pub-
lications with n authors yield as many authorship records, and for every author,
the n−1 other records provide important information about the publication co-
authors. Content and co-author similarity are two interrelated facets of AND,
none of which is sufficient in isolation. Content similarity between two author-
ship records with the same author name is not necessary to establish author
identity: The same author can produce publications on different topics, or even
in completely distinct fields, which will not be very similar. High co-author sim-
ilarity is normally a strong indicator for author identity [15, 17], and is the sole
information source for some AND approaches. On the other hand, the absence
of common co-authors does not indicate non-identical authors, as one author
can collaborate with distinct groups of colleagues. Additional meta data like
publication year distance can have a mediating function here, as it can capture
changes in an author’s interests over time [6].

2.1 AND as Binary Classification plus Clustering

We follow [6, 14], and others in separating the AND task into binary classifica-
tion of pairs of authorship records and subsequent clustering. Commonly, the
input for an AND system is a list of so-called blocks, i.e. a list of sets of author-
ship records with a shared identical, or highly similar, name, and the output
is a partitioning of each block into sub sets for the individual authors. In the
binary classification paradigm, a single data instance represents two authorship
records (from the same block, but from different publications) and a binary label



which is 1 if the publications are authored by the same person, and 0 otherwise.
In our approach, each instance represents the following information for each of
the two authorship records: Content information subsumes various textual
information. We assume that minimally the publication title is available, but
the same representation is easily applied to other textual artifacts, like abstracts
or full texts. Title words of each of the two authorship records are lowercased,
cleaned of stop words, and represented as one list of complete and one list of
stemmed tokens (created using the PorterStemmer). Having these two lists at
our disposal allows us to use pre-trained WE resources that expect either for-
mat. Each title is also split into one list each of character 3-, 4-, and 5-grams. In
addition, we apply a two-word window on the stemmed token list for each pub-
lication to obtain a list of word bi-grams. Co-author information for each
of the two authorship records is represented as a list of normalized co-author
names, excluding the shared author name. Normalization includes initialization
of the first name and lowercasing of the entire string. A list of three co-authors
could thus look like ”f.harary m.lim d.wunsch”. Meta data includes relational,
first-order attributes of the pair of authorship records: Publication year distance
is the absolute difference between both publications’ year attributes. If the year
is missing for one or both publications, the value is −1. Publication venue match
is 1 if the publication venues of the two publications match, 0 if they are avail-
able but do not match, and −1 if one or both is unavailable.1 After obtaining
binary classification results for a given block, the individual decisions have to be
combined into clusters. This is commonly done as a graph partitioning task (cf.
Section 5), where binary classification confidence scores are used as edge weights
in an undirected graph, and the author partitions are obtained by some graph
algorithm. Alternatively, we create the graph in such a way that its connected
components can directly be interpreted as clusters. We do this by employing dif-
ferent minimum positive confidence thresholds during graph creation (cf. Section
4.2).

3 A Deep Learning Model for AND

3.1 Word Embeddings for Semantic Similarity

The basic idea behind WEs is that distributional (i.e. co-occurrence) informa-
tion derived from a large text corpus is represented in low-dimensional vector
space in such a way that proximity in this vector space can be interpreted as
similarity or relatedness. The vector representation for a single word is com-
monly given as a list of n real-valued numbers, where n is the dimensionality of
the embedding. Two popular algorithms for learning WEs from texts are GloVe
[13] and word2vec [10]. Apart from the desired dimensionality, both algorithms
accept, among others, one parameter for the window size, and one for the min-
imum vocabulary count. The first parameter controls the maximum distance

1 We only consider venue identity rather than similarity because our data set only
contains abstract, uninterpretable venue identifiers.



between words that are considered as co-occurrent, and the second parameter
controls how often a word has to occur in the corpus in order to be considered at
all. Depending on the choice of parameters and the size of the corpus, training
WEs can be computationally expensive. However, since they are supposed to
capture universal, task-independent semantic relations, they can be utilized in
diverse settings without the need for re-training. Several studies have focussed
on the evaluation of WEs. [16] perform extensive experiments with diverse WEs,
and evaluate how well they reproduce human semantic relatedness judgements,
and how much they contribute to tasks like e.g. sentiment classification. [5], in
a similar vein, evaluate several WEs on what they call NLP (=extrinsic) and
linguistic (=intrinsic) tasks. While the level of granularity of WEs is the individ-
ual word, computing the semantic similarity of arbitrarily long word sequences
(e.g. sentences or publication titles) requires that those sequences are reduced
to single vectors that somehow capture the semantics of the whole sequence.
A common way to do this is to average over the embeddings for the individ-
ual words: Given a collection of n-dimensional WE vectors and a sequence of i
words, we retrieve the j vectors for those words that are covered in the collection
(with j <= i), sum over the j values for each of the n dimensions, and divide
each of the values by j. This yields one n-dimensional embedding vector for
each word sequence, which can be compared to similar representations of other
sequences, e.g. by means of computing the cosine similarity. This simple and
efficient method has been shown to work surprisingly well, and is often used as
a baseline in more complex, training-intensive systems, e.g. [9]2. We prefer this
simple heuristic over more powerful Deep Learning devices (like e.g. RNNs or
LSTM networks, which maintain a notion of ordering in the reduced sequence)
because 1) our preliminary experiments showed that they dramatically increase
the technical complexity and training time for our system, rendering it difficult
to use in a practical setting, and 2) we think that, for publication titles, the
subtle differences conveyed by word order are negligible.

3.2 System Architecture and Components

Figure 1 shows the architecture of the binary classifier employed in our system,
which is implemented as one multi-layer neural network with Keras [2] on top
of Theano [19], and which is trained using the Adam optimizer. Input to the
network is provided by the two authorship records (depicted as documents).
The network consists of three auxiliary models (horizontal boxes), each of which
focusses on a particular facet of the classfication problem. Only the meta data
attributes, due to their simplicity, do not have their own model. Each auxil-
iary model is a multi-layer neural network (cf. below for details) with sigmoid
activation and a final softmax layer, which outputs the positive and negative
class probability for each instance. The simple co-author model contains only
two features, the cosine and the Jaccard similarity of the normalized co-author

2 [7] report similar baseline results with summing instead of averaging over the em-
beddings of a sequence.



Fig. 1. System architecture: Binary Classifier

names (without the shared name). The model consists of one two-node hidden
layer only. The simplicity of this model, which treats each name as one atomic
token, is a result of the author name structure found in the KISTI data set (cf.
Section 4.1), which, like most standard AND data sets [12], does not require any
sophisticated string similarity measures due to the absence of name variability.
As the focus of this paper lies on the semantic title model, the co-author model
is intended as a high-precision baseline only. The surface title model covers
the string-matching aspect of content similarity in terms of cosine and Jaccard
similarity of stemmed tokens, character 3-, 4-, and 5-grams, and word bi-grams,
resulting in a total of ten features. The model consists of one hidden layer with
ten nodes. Here, stemmed tokens are used in order to increase the coverage. The
features used in this model are more or less standard features found in many
NLP and IR systems. Despite their simplicity, surface-based features can handle
a lot of cases, and display a very reasonable performance (cf. the baseline results
in Section 4.2). This can make it difficult to demonstrate the contribution of
semantic features, because their effect is easily covered up by the effect of the
surface-based features. The semantic title model (including its preprocess-
ing) is the most interesting component of the binary classifier. The system can
be supplied with c collections of WEs. For each collection, the preprocessing
component computes the cosine similarity of the (stemmed or unstemmed) title



tokens from the two authorship records, which are then passed to the semantic
title model as input features. The model consists of three hidden layers with
one node for each of the c input features. For reasons of clarity, Figure 1 shows
only two collections of WEs (c=2), but the system can accept arbitrarily many,
including none, in which case the semantic title model remains inactive. One
important feature of the semantic title model is that tokens that appear in the
publication titles of both authorship records are completely removed from its
input prior to generating the averaged WEs. This is motivated by the idea that
perfect string identity can and should be handled in the surface title model, and
that the semantic title model should be allowed to ignore these cases in favor of
cases that involve actual vector space similarity rather than identity. Finally, the
joint model (vertical box) is also a multi-layer neural network with sigmoid ac-
tivation and a final softmax layer. It simply integrates the outputs of the softmax
layers of the auxiliary models, as well as the meta data attributes, and produces
the final classification. The joint model consists of two hidden layers with eight
(with semantic title model) or six (without semantic title model) nodes. At test
time, it outputs for each instance the positive and negative class probability, and
the higher of the two probabilities determines the final classification for the in-
stance. During training, each auxiliary model is presented with its respective sub
set of features, computed from the instance representation described in Section
2.1 above, and with the binary label. Likewise, the joint model is presented with
the outputs of the auxiliary models and the same binary label. Being part of a
single network, all four models are trained simultaneously. However, we decouple
the training of the models by computing a training error and corresponding loss
for each model individually. This allows the different parts of the system to train
at different speeds: the simple co-author model and the surface title model, e.g.,
converge quickly, while the semantic title model and the joint model, depending
on the parameters and the number of WE collections, converge more slowly.

In order to obtain author clusters, we then employ NetworkX3 to create an
undirected graph containing one node for every authorship record in the block,
and to add edges between all node pairs that were classified with a minimum
positive confidence above a given (variable) threshold.

4 Data, Experiments, and Results

4.1 Data Set and Word Embeddings

Our task-specific data set is KISTI [8], which is derived from dblp data and
consists of 41.674 authorship records from 37.613 publications, and 6.921 dif-
ferent authors. The data is pre-structured into blocks which are identified by a
first name initial and a full last name. Each block contains authorship records
from 1 to max. 71 different authors. DEV-TRAIN, DEV-TEST, and EVAL data
was generated from the KISTI data set as follows: We randomly distributed
the individual authors in each block (i.e. y.chen 1, y.chen 2, ... y.chen n) into

3 https://networkx.github.io/



three sets of roughly the same size, ignoring blocks with less than six authors.
Then, for each of the three sets, we paired all authorship records in the same
block with each other, and created either a positive or a negative instance in the
format described above in Section 2.1. Note that, of the various possible meth-
ods of creating data instances from the KISTI data set, this method makes it
rather difficult for the system, because, at test time, all authors in DEV-TEST
and EVAL are unseen. This yielded 190.009 DEV-TRAIN instances (41.8% pos,
58.2% neg.), 226.546 DEV-TEST (47.66% pos., 52.34% neg.), and 163.000 EVAL
(42.95% pos., 57.05% neg.). Word level semantics is integrated into our system
by means of pre-trained GloVe embeddings [13] and custom-built WEs trained
on various text corpora. The GloVe embeddings4 (GloVe) were trained on huge
corpora (between 6 and 840 billion tokens) covering Wikipedia pages and other
web data, as well as news wire texts. A second set of WEs (dblp) was trained on
a text corpus of 3.5 million publication titles derived from a dblp XML dump5.
We made sure to remove from the corpus the titles of all publications that are
also contained in the KISTI data set. A third set of WEs (MSAc) was trained on
a corpus of 6.5 million publication titles extracted from the Microsoft Academic
Search dataset. Prior to training, for dblp and MSAc, special characters were
removed, and the publication titles were lowercased, cleaned from stopwords,
and stemmed with the PorterStemmer. A fourth set of WEs (dblp+MSAc) was
trained on the concatenation of the dblp and the MSAc text corpora. All WEs
were trained with the gensim6 implementation of word2vec, using the CBOW
variant. For all corpora, we employed several values for the parameters dimen-
sionality (d=50,100,200,300), minimum token count (mc=5,20), and window size
(w=5,10). There is one embedding file for each combination, resulting in 16 sep-
arate files per text corpus. Table 1 gives some statistics. Note that the total
number of text tokens used for calculating the coverage of the embeddings is
higher for the GloVe embeddings (10.734) because they contain unstemmed to-
kens, while all other embeddings were trained on stemmed tokens. Also, the
glove.840B.300d embeddings are case-sensitive, which is why their coverage on
our lowercased data set is smaller.

4.2 Experiments and Discussion

As mentioned in Section 2.1, our system consists of two parts, which we evalu-
ate individually. The binary classifier is evaluated in terms of P, R, and F for
retrieving positive instances. We train one binary classifier with each set of WEs
individually, and with all sets of WEs (i.e. GloVe, dblp, and MSAc) at once.
Note that we use all five (GloVe) resp. 16 (dblp, MSAc) embedding files per set
simultaneously. Thus, the semantic title model has as many as 37 features when
using all WEs at once. We do this in order to exploit potential complementarity
of the WEs produced with different training parameters, and because our initial

4 https://nlp.stanford.edu/projects/glove/
5 http://dblp.uni-trier.de/xml/
6 https://radimrehurek.com/gensim/



Table 1. Word Embedding Statistics

Name # Tokens Coverage

glove.6B.{100,200,300}d 400.000 9.151 / 10.734 (85%)
glove.42B.300d 1.917.494 9.944 / 10.734 (92%)
glove.840B.300d 2.196.017 9.511 / 10.734 (88%)

dblp.cbow.{50,100,200,300}d.mc5.{w5,w10} 56.081 6.522 / 7.263 (89%)
dblp.cbow.{50,100,200,300}d.mc20.{w5,w10} 23.738 6.081 / 7.263 (83%)

msac.cbow.{50,100,200,300}d.mc5.{w5,w10} 198.383 6.411 / 7.263 (88%)
msac.cbow.{50,100,200,300}d.mc20.{w5,w10} 74.255 5.924 / 7.263 (81%)

dblp+msac.cbow.{50,100,200,300}d.mc5.{w5,w10} 224.599 6.680 / 7.263 (91%)
dblp+msac.cbow.{50,100,200,300}d.mc20.{w5,w10} 84.104 6.383 / 7.263 (87%)

experiments gave no clear indication as to which parameters are optimal. The
results for the binary classifier are given in Table 2, with the maximum P, R,
and F values in bold. Each classifier is trained for 40 epochs, and we report the
performance with the maximum F on DEV-TEST, along with the number of
epochs that were required to reach that result (E).

Table 2. Binary Classification Results (max. F score reached after E epochs)

ID WEs Files P R F E

0 - - 82.48 45.82 58.91 9
1 GloVe 5 81.21 47.22 59.72 9
2 dblp 16 76.96 67.18 71.74 20
3 MSAc 16 78.29 53.82 63.79 23
4 dblp+MSAc 16 76.38 65.29 70.40 23
5 GloVe, dblp, MSAc 37 75.67 69.01 72.19 13

As a baseline, we trained and tested the classifier with ID 0 without supply-
ing any WEs, so that the semantic title model remains inactive. As expected,
this classifier shows the worst performance (58.91 F), but not, however, by a
large margin. The baseline binary classifier is clearly biased towards P, with the
highest P and the lowest R of all binary classifiers. We see this as the result
of the classifier’s limitation to simple string matching, which prevents it from
retrieving instances which are semantically related, but where this relatedness
is not obvious on the surface. The worst non-baseline classifier is 1, only slightly
above baseline with 59.72 F. The other non-baseline classifiers are considerably
better, with F scores of 63.79 (3), 70.40 (4), and 71.74 (2). Note that classifier 2
uses the WEs trained on the dblp corpus, which is in-domain in the sense that it
bears the most similarity - although no publication overlap - to the KISTI data
set. It yields by far the best binary classification performance of all WEs trained
on individual corpora. Note also that classifier 4, which is trained on the con-
catenation of the dblp and MSAc corpora, fails to improve, or even reach, the F
score of the classifier trained on the dblp corpus alone (2). Thus, simply merging



both corpora prior to WE training did not yield an improvement. As mentioned
earlier, another way of integrating different sources of word level semantics into
our system is by using several sets of WEs simultaneously, as in classifier 5. And
indeed, this configuration yields the best performance of all binary classifiers:
although P drops to the lowest value of all, the associated gain in R is sufficient
to also result in the best overall F of 72.19.

In the next step, we applied each classifier to the clustering task. Table 3
reports B3 [1] results on DEV-TEST calculated by the CONLL scorer7. For
each binary classifier from Table 2, we report one set of results for different
minimum positive confidence threshold values (mpc=0.5, 0.75, 0.9, 0.95).8 The
maximum P, R, and F values for each of the four sets are given in bold. In
addition, the best F value for each classifier (i.e. for each row in Table 3) is
underlined. The intuition behind the mpc thresholds is to increase the precision
(P) of the clustering by only allowing high-confidence binary classifications to
cause the clustering together of two authorship records. At the same time, the
recall (R) will decrease, as fewer clusters are created, but we expect this tradeoff
to be less severe for ’better’, more discriminative binary classifiers.

Table 3. Clustering Results

mpc=0.5 mpc=0.75 mpc=0.9 mpc=0.95
ID P R F P R F P R F P R F
0 57.23 97.05 72.00 75.74 90.77 82.57 87.95 82.95 85.37 93.61 70.29 80.29
1 56.48 97.36 71.49 71.76 92.43 80.80 85.97 85.24 85.60 93.65 70.20 80.25
2 53.50 98.99 69.46 65.19 95.50 77.49 83.98 86.94 85.44 95.31 68.45 79.68
3 53.86 98.46 69.63 69.87 92.92 79.76 85.42 85.40 85.41 94.49 69.89 80.35
4 52.67 99.35 68.85 65.28 94.97 77.37 85.00 86.25 85.62 94.50 69.81 80.30
5 52.70 99.37 68.87 64.67 95.80 77.21 85.41 85.68 85.66 95.06 69.63 80.38

It can be seen that increasing the mpc threshold has the intended effect,
as the P values for all classifiers increase from left to right without exception.
Also as expected, the R values decrease from left to right. Up to and including
mpc=0.9, this decrease is compensated for by the associated increase in P, such
that the F values do also increase. For mpc=0.95, however, there is a sharp
decline in R for all classifiers, which also causes the F values to drop. Thus,
in our experiments, all binary classifiers reach their best F values for mpc=0.9
(underlined). However, for all classifiers, including the baseline, these F values are
extremely similar at around 85. Although the best binary classifier (5) performs
also best in clustering with an F of 85.66, it does so by a negligible margin only.
So, the observed differences in binary classification do not translate to similar
differences in clustering, which is somewhat surprising. We also see, however,
that all non-baseline classifiers (i.e. those with an active semantic title model)

7 http://conll.github.io/reference-coreference-scorers/
8 mpc=0.5 corresponds to no threshold, as 0.5 is the minimum confidence in a binary

classification.



have a better R (at least 85.24 (1)) than the baseline classifier (82.95), which is
the intended effect of the semantic title model.

5 Related Work

As a computational task, AND has a long history in both computer science
and digital library science, and has been tackled with symbolic and heuristic
approaches, as well as with supervised and unsupervised machine learning [4].
To our knowledge, WEs have not previously been used for the task. However, a
similar approach for inventor disambiguation in patent data bases is described
in [11]. [20] is the only work so far in which Deep Learning methods have been
applied to AND. Their model consists of an ensemble of (an unreported num-
ber of) N multi-layer perceptrons (MLPs) with seven layers of 50 hidden units
each. As data, [20] use 30.537 binary labeled pairs of authorship records (12.93%
positive pairs, 87.07% negative) featuring a matching, or highly similar, Viet-
namese author name. In total, the data set includes names and name variants
of ten authors. Each data instance contains numerical scores representing the
similarity of the two records’ author names, co-author names, affiliations, paper
keywords, and author interest keywords, respectively. Note that paper titles are
apparently not used. The scores are calculated using the Jaccard, Levenshtein,
Jaro, Jaro-Winkler, Smith-Waterman, and Mogne-Elkan measures. The model
is trained by iteratively providing each of the N MLPs with a randomly selected
sample from the training data set. In contrast to our work, every MLP is exposed
to the full set of features of the selected instances during training, so that there
is no ’division of labour’ between the MLPs with respect to the individual facets
of the AND task. At test time, a classification is obtained by simply averaging
over the predictions of the individual MLPs, while we use a dedicated network
(the joint model) to integrate the outputs of the three individual models. [20]
report a binary classification accuracy of 99.31 on their 20% hold-out data set,
which the authors claim significantly outperforms their earlier systems based on
conventional machine learning. Given the strong negative bias in their data set
(almost 90%), we argue that it would have been more appropriate to evaluate
the binary classifier according to Precision, Recall, and F-measure for retrieving
positive instances (like in the present work). No clustering of the binary de-
cisions is performed, so a full comparison of [20] and our work is not possible.
Even more importantly, the system comprises (in our terminology) only the sim-
ple co-author model and the surface title model, and does not address semantic
similarity beyond the string level.

The NC system described in [15] marks the current state of the art on the
KISTI data set. It relies on manually encoded, domain-specific expert heuristics,
which operate on automatically extracted string-similarity scores (including co-
sine similarity and tf*idf). The weights of these scores are manually tuned, ren-
dering the approach completely unsupervised. Supervised training can option-
ally be employed to further optimize parameters. The system uses (co-)author
names as well as publication and venue titles but, like [20], does not go beyond



the string level. The output of the system are clusters, which are evaluated with
the K score, which is roughly equivalent to F. On the KISTI data set [15] re-
port a total K score of 94.00, which is obtained in a supervised setup by doing
ten runs of two-fold (50%-50%) cross-validation per block, averaging the results
per block, and again averaging the results for all blocks. Although the data set
and the evaluation measure are the same or similar, the results of [15] cannot
directly be compared with our results. One reason is that, in the block-wise
cross-validation of [15], authors in the test split have probably also been in the
training split, while in our approach, authors in test are always unseen.

6 Conclusion and Future Work

We presented the first AND system which tackles semantic similarity between
publication titles by means of WEs. The system, although using some Deep
Learning technology, aims at being practically usable and efficient. We found
that adding WE-based semantic similarity can make a significant contribution
to the binary classification part of the AND task, which is the most important
result of this paper, and that WEs trained on in-domain corpora perform better
than those trained on other, less similar corpora. Pre-trained general-purpose
WEs (GloVe), although of high quality, were not helpful. We also found that
complementarity of different WEs can best be exploited by using many indepen-
dent WEs simultaneously, while training single WEs on concatenated corpora
was not successful. Improvements observed in binary classification, however, did
not clearly translate to improvements in clustering. In future work, therefore,
we will improve the way our system exploits the individual binary, weighted
classifications, e.g. by employing more powerful, state-of-the-art graph cluster-
ing algorithms. In order to create a competitive AND system, we also plan to
extend the simple co-author model to be a more powerful component. All exten-
sions and improvements will be able, if required, to make use of state-of-the-art
methods in the Deep Learning ecosystem, which our system is already part of.

Acknowledgments The research described in this paper was conducted
in the project SCAD – Scalable Author Name Disambiguation, funded in part
by the Leibniz Association (grant SAW-2015-LZI-2), and in part by the Klaus
Tschira Foundation. We thank Florian Reitz (dblp) for data preparation and
the anonymous TPDL reviewers for their useful suggestions.

References

1. A. Bagga and B. Baldwin. Algorithms for scoring coreference chains. In Proceed-
ings of the 1st International Conference on Language Resources and Evaluation,
Granada, Spain, 28–30 May 1998, pages 563–566, 1998.

2. F. Chollet. Keras. https://github.com/fchollet/keras, 2015.
3. R. G. Cota, A. A. Ferreira, C. Nascimento, M. A. Gonçalves, and A. H. F. Laender.

An unsupervised heuristic-based hierarchical method for name disambiguation in
bibliographic citations. J. Am. Soc. Inf. Sci. Technol., 61(9):1853–1870, Sept. 2010.



4. A. A. Ferreira, M. A. Gonçalves, and A. H. Laender. A brief survey of automatic
methods for author name disambiguation. SIGMOD Record, 41(2):15–26, 2012.

5. S. Ghannay, B. Favre, Y. Estève, and N. Camelin. Word embedding evaluation
and combination. In Proceedings of LREC 2016, Portorož, Slovenia, May 23-28,
2016, 2016.

6. T. Gurney, E. Horlings, and P. van den Besselaar. Author disambiguation using
multi-aspect similarity indicators. Scientometrics, 91(2):435–449, 2012.

7. B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures
for matching natural language sentences. In Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2042–2050, 2014.

8. I.-S. Kang, P. Kim, S. Lee, H. Jung, and B.-J. You. Construction of a large-
scale test set for author disambiguation. Information Processing & Management,
47(3):452–465, 2011.

9. T. Kenter and M. de Rijke. Short text similarity with word embeddings. In
Proceedings of CIKM 2015, pages 1411–1420, New York, NY, USA, 2015.

10. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. In Proceedings of the International Conference on
Learning Representations, 2013.

11. N. Monath and A. McCallum. Discriminative hierarchical coreference for inventor
disambiguation. Presentation at PatentsView Inventor Disambiguation Technical
Workshop, September, 2015.

12. M.-C. Müller, F. Reitz, and N. Roy. Data sets for author name disambiguation:
an empirical analysis and a new resource. Scientometrics, 111(3):1467–1500, 2017.

13. J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar, 25–29 October 2014, pages 1532–1543,
2014.

14. Y. Qian, Q. Zheng, T. Sakai, J. Ye, and J. Liu. Dynamic author name disambigua-
tion for growing digital libraries. Information Retrieval Journal, 18(5):379–412,
2015.

15. A. F. Santana, M. A. Gonçalves, A. H. F. Laender, and A. A. Ferreira. On the
combination of domain-specific heuristics for author name disambiguation: the
nearest cluster method. International Journal on Digital Libraries, 16(3-4):229–
246, 2015.

16. T. Schnabel, I. Labutov, D. M. Mimno, and T. Joachims. Evaluation methods for
unsupervised word embeddings. In Proceedings of EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 298–307, 2015.

17. D. Shin, T. Kim, J. Choi, and J. Kim. Author name disambiguation using a
graph model with node splitting and merging based on bibliographic information.
Scientometrics, 100(1):15–50, 2014.

18. N. R. Smalheiser and V. I. Torvik. Author name disambiguation. ARIST, 43(1):1–
43, 2009.

19. Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

20. H. N. Tran, T. Huynh, and T. Do. Author name disambiguation by using deep
neural network. In Intelligent Information and Database Systems: 6th Asian Con-
ference, ACIIDS 2014, Bangkok, Thailand, April 7-9, 2014, Proceedings, Part I,
pages 123–132, Cham, 2014. Springer International Publishing.


