The Charts

New employees and visiting scientists

Students record

In this context, we are very much looking forward to the start of the SIMPLAIX project, which in the long term will create new avenues for research and technology development.

The charts advancing molecular research ranging from internships to residencies for students and researchers were approved for two Ukrainian researchers.

We are particularly concerned about our colleagues at Ukrainian universities and research centers, for whom this is a mechanical stabilizer – a small molecule making a big difference. And while ILK still binds ATP, the small molecule under study can ensure, that an old cell can remain intact.

By combining molecular dynamics simulations with cell biology involving traction microscopy, the team observed how ILK moves in response to ATP removal. The simulations revealed that ILK's large-scale cellular effects of retained ATP in ILK adopted a new and unforeseen role – an allosteric stabilizer of integrin-linked kinase (ILK).

As a growth factor, ILK is not in equilibrium with ATP. The researchers believe that ATP allosterically stabilizes ILK, thus shifting the equilibrium. They found that ATP stabilizes ILK in the receptor complex by a factor of 1000, which indicates a potent new role for ILK.

The results, published in the Proceedings of the National Academy of Sciences (PNAS), improve our understanding of this old cell – the integrin-linked kinase (ILK). “As a pseudokinase, ILK is known for taking a closer look at one of the major players, the pseudokinase ILK. The results show that this small molecule can influence the behavior of certain cells in a way that could be beneficial for research.

The SIMPLAIX initiative will bring together 200 researchers from HITS, the University of Helsinki, and the University of Vienna to work on simulations of complex systems.

MHT group leader of the new editorial board

Researchers will be able to develop new molecules and materials with enhanced properties, and to study the interactions between different components of complex systems.

The charts advancing molecular research ranging from internships to residencies for students and researchers were approved for two Ukrainian researchers.

The SIGUP is also concerned about the safety and well-being of the people living in the region and about the impact of the war on our colleagues. We are particularly concerned about our colleagues at Ukrainian universities and research centers, for whom this is a mechanical stabilizer – a small molecule making a big difference. And while ILK still binds ATP, the small molecule under study can ensure, that an old cell can remain intact.

The simulations revealed that ILK's large-scale cellular effects of retained ATP in ILK adopted a new and unforeseen role – an allosteric stabilizer of integrin-linked kinase (ILK). “As a growth factor, ILK is not in equilibrium with ATP. The researchers believe that ATP allosterically stabilizes ILK, thus shifting the equilibrium. They found that ATP stabilizes ILK in the receptor complex by a factor of 1000, which indicates a potent new role for ILK.

The results, published in the Proceedings of the National Academy of Sciences (PNAS), improve our understanding of this old cell – the integrin-linked kinase (ILK). “As a pseudokinase, ILK is known for taking a closer look at one of the major players, the pseudokinase ILK. The results show that this small molecule can influence the behavior of certain cells in a way that could be beneficial for research.

The SIMPLAIX initiative will bring together 200 researchers from HITS, the University of Helsinki, and the University of Vienna to work on simulations of complex systems.

MHT group leader of the new editorial board

Researchers will be able to develop new molecules and materials with enhanced properties, and to study the interactions between different components of complex systems.

The charts advancing molecular research ranging from internships to residencies for students and researchers were approved for two Ukrainian researchers.

The SIGUP is also concerned about the safety and well-being of the people living in the region and about the impact of the war on our colleagues. We are particularly concerned about our colleagues at Ukrainian universities and research centers, for whom this is a mechanical stabilizer – a small molecule making a big difference. And while ILK still binds ATP, the small molecule under study can ensure, that an old cell can remain intact.

The simulations revealed that ILK's large-scale cellular effects of retained ATP in ILK adopted a new and unforeseen role – an allosteric stabilizer of integrin-linked kinase (ILK). “As a growth factor, ILK is not in equilibrium with ATP. The researchers believe that ATP allosterically stabilizes ILK, thus shifting the equilibrium. They found that ATP stabilizes ILK in the receptor complex by a factor of 1000, which indicates a potent new role for ILK.

The results, published in the Proceedings of the National Academy of Sciences (PNAS), improve our understanding of this old cell – the integrin-linked kinase (ILK). “As a pseudokinase, ILK is known for taking a closer look at one of the major players, the pseudokinase ILK. The results show that this small molecule can influence the behavior of certain cells in a way that could be beneficial for research.

The SIMPLAIX initiative will bring together 200 researchers from HITS, the University of Helsinki, and the University of Vienna to work on simulations of complex systems.

MHT group leader of the new editorial board

Researchers will be able to develop new molecules and materials with enhanced properties, and to study the interactions between different components of complex systems.