Motivation

- O(N3) computational cost of DFT;
- ESP-based methods have a relatively high conformational dependence;
- The inability to a priori designate partial charges.

Example 1: Pfizer Charge Assignment Method (PCAM) ${ }^{[1]}$

- An atom's PCAM charge depends only on its neighbors' configuration;
- It is limited to $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{S}, \mathrm{Cl}$ atoms;
- Each element has a charge model that uses radical and angular symmetry functions to represent local surroundings;
- It employs random forest ML-method and the charge is calculated by: $q_{j}^{0}=\frac{\sum_{i=1}^{b} T_{i}\left(A_{j}\right)}{B}$, where B is

the tree count;
The formula calculates corrected charges: $q_{j}=q_{j}^{0}-\frac{q_{j}^{0} * \sigma_{j} * \Delta Q}{Q_{a b s}}$.
Reprinted with permission from J. Comput. Chem. 2013, 34, 1661. © 2013 John Wiley and Sons.

Example 2: ContraDRG ${ }^{[2]}$

- Molecules are represented as cyclic undirected graphs with additional information like the number of nested circles, distances between nearby atoms, etc.;
- Atomic positions and adjacency matrix (bonds) are needed to encode molecules;
- It is limited to $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ atoms;
- Each element has a charge model;
- A detailed benchmark shows KR is the best model.

Example 3: Atom-centered Atom Pairs (AP) fingerprint ${ }^{[3]}$

- Partial charges were derived using TPSSh/def2TZVP electron densities and DDEC method;
- AP fingerprints (atom type, number of heavy-atom $0_{0.8}$ neighbors, distances, etc.) represent atoms;
- A 2D topological representation eliminates conformational dependency and ensures transferability;
- It is limited to $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ atoms;
- RF generates accurate predictions of unseen compounds.

Example 4: Atom-Path-descriptor (APD) ${ }^{[4]}$

- Using APD descriptors (2 and 3D information) to predict partial atomic charges;
- Atoms are represented by multiple layers, with each layer encoding information such as atom type, distance, bond type, and so on.

Element	RMSE $\left[\mathrm{e}^{\star} 0^{-3}\right]$		
	$[3]$	APD-RF	APD-XGB
H	93	72	63
P	685	561	372
C	220	142	114

Bioinformatics 2020, 36, 4721
Example 5: Multiple-Choice Knapsack Problem (ε-MCKP) ${ }^{[5]}$

- Molecules are considered as graphs (G = (V , E, t));
- Create a database with a record for each isomorphism class in the subgraph list for each atom;
- Each isomorphism class's partial charges are condensed into a histogram.
Reprinted from Front. Genet. 2019, 10, 990 under CC-BY OA license. © 2019 Martin and Heider.

