The length of time that a drug molecule spends bound to its protein target – its residence time – is an important determinant of its efficacy, and is inversely related to the rate of dissociation of the drug-target complex. Consequently, there is a need for computational methods to predict dissociation rates to guide drug design and discovery. For most pharmaceutically relevant compounds, the timescales for dissociation from the target far exceed those that are accessible to conventional molecular dynamics simulation methods.
To address this problem, we developed and evaluated an efficient computational workflow that enables the prediction of relative drug-protein residence times and the analysis of dissociation mechanisms in an automated manner. The workflow is based on simulations performed with the Random Acceleration Molecular Dynamics (RAMD) method which, in addition to existent implementations in the NAMD and AMBER software packages, we have now implemented in the freely available GROMACS molecular simulation engine for simulations on CPU or GPU nodes.
Relative dissociation rates are computed with the tauRAMD protocol and dissociation trajectories are analyzed using protein–ligand interaction fingerprints with our new MD-IFP set of tools. The workflow is described in Kokh et al. J. Chem. Phys. 153, 125102 (2020); doi: 10.1063/5.0019088 , recently published in a JCP Special Topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms, Force fields, and Applications.
Kokh DB, Doser B, Richter S, Ormersbach F, Cheng X, Wade RC “A workflow for exploring ligand dissociation from a macromolecule: Efficient random acceleration molecular dynamics simulation and interaction fingerprint analysis of ligand trajectories”, J. Chem. Phys. 153, 125102 (2020); doi: 10.1063/5.0019088, recently published in a JCP Special Topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms, Force fields, and Applications.
The Heidelberg Institute for Theoretical Studies (HITS) was established in 2010 by the physicist and SAP co-founder Klaus Tschira (1940-2015) and the Klaus Tschira Foundation as a private, non-profit research institute. HITS conducts basic research in the natural sciences, mathematics and computer science, with a focus on the processing, structuring, and analyzing of large amounts of complex data and the development of computational methods and software. The research fields range from molecular biology to astrophysics. The shareholders of HITS are the HITS-Stiftung, which is a subsidiary of the Klaus Tschira Foundation, Heidelberg University and the Karlsruhe Institute of Technology (KIT). HITS also cooperates with other universities and research institutes and with industrial partners. The base funding of HITS is provided by the HITS Stiftung with funds received from the Klaus Tschira Foundation. The primary external funding agencies are the Federal Ministry of Education and Research (BMBF), the German Research Foundation (DFG), and the European Union.
This page is only available in English
We use cookies on our website. Some of them are essential, while others help us improve this site and your experience.
Here you will find an overview of all cookies used. You can give your consent to entire categories or have further information displayed and thus select only certain cookies.
Essential cookies enable basic functions and are necessary for the proper functioning of the website.
Name | |
---|---|
Provider | Eigentümer dieser Website |
Purpose | Speichert die Einstellungen der Besucher, die in der Cookie Box von Borlabs Cookie ausgewählt wurden. |
Cookie Name | borlabs-cookie |
Cookie Expiry | 1 Jahr |
Statistics Cookies collect information anonymously. This information helps us to understand how our visitors use our website.
Accept | |
---|---|
Name | |
Provider | HITS gGmbH |
Purpose | Cookie von Matomo für Website-Analysen. Erzeugt statistische Daten darüber, wie der Besucher die Website nutzt. |
Cookie Name | _pk_*.* |
Cookie Expiry | 13 Monate |
Content from video platforms and social media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.
Accept | |
---|---|
Name | |
Provider | |
Purpose | Wird verwendet, um Facebook-Inhalte zu entsperren. |
Privacy Policy | https://www.facebook.com/privacy/explanation |
Host(s) | .facebook.com |
Accept | |
---|---|
Name | |
Provider | |
Purpose | Wird zum Entsperren von Google Maps-Inhalten verwendet. |
Privacy Policy | https://policies.google.com/privacy |
Host(s) | .google.com |
Cookie Name | NID |
Cookie Expiry | 6 Monate |
Accept | |
---|---|
Name | |
Provider | |
Purpose | Wird verwendet, um Instagram-Inhalte zu entsperren. |
Privacy Policy | https://www.instagram.com/legal/privacy/ |
Host(s) | .instagram.com |
Cookie Name | pigeon_state |
Cookie Expiry | Sitzung |
Accept | |
---|---|
Name | |
Provider | OpenStreetMap Foundation |
Purpose | Wird verwendet, um OpenStreetMap-Inhalte zu entsperren. |
Privacy Policy | https://wiki.osmfoundation.org/wiki/Privacy_Policy |
Host(s) | .openstreetmap.org |
Cookie Name | _osm_location, _osm_session, _osm_totp_token, _osm_welcome, _pk_id., _pk_ref., _pk_ses., qos_token |
Cookie Expiry | 1-10 Jahre |
Accept | |
---|---|
Name | |
Provider | |
Purpose | Wird verwendet, um Twitter-Inhalte zu entsperren. |
Privacy Policy | https://twitter.com/privacy |
Host(s) | .twimg.com, .twitter.com |
Cookie Name | __widgetsettings, local_storage_support_test |
Cookie Expiry | Unbegrenzt |
Accept | |
---|---|
Name | |
Provider | Vimeo |
Purpose | Wird verwendet, um Vimeo-Inhalte zu entsperren. |
Privacy Policy | https://vimeo.com/privacy |
Host(s) | player.vimeo.com |
Cookie Name | vuid |
Cookie Expiry | 2 Jahre |
Accept | |
---|---|
Name | |
Provider | YouTube |
Purpose | Wird verwendet, um YouTube-Inhalte zu entsperren. |
Privacy Policy | https://policies.google.com/privacy |
Host(s) | google.com |
Cookie Name | NID |
Cookie Expiry | 6 Monate |