Hemri S (2019). Multi-model Combination and Seamless Prediction, In Handbook of Hydrometeorological Ensemble Forecasting, Eds: Duan, Q. and Pappenberger, F. and Thielen, J. and Wood, A. and Cloke, H. L. and Schaake, J. C., Springer-Verlag, pp. 285-307 53
Arnault J, Rummler T, Baur F, Lerch S, Wagner S, Fersch B, Zhang Z, Kerandi N, Keil C, Kunstmann H (2018). Precipitation sensitivity to the uncertainty of terrestrial water flow in WRF-Hydro: An ensemble analysis for Central Europe, Journal of Hydrometeorology, 19:1007–1025 338
Baran S, Lerch S (2018). Combining predictive distributions for the statistical post-processing of ensemble forecasts, International Journal of Forecasting, 34:477–496 339
Ehm W, Krüger F (2018). Forecast dominance testing via sign randomization, Electronic Journal of Statistics, 12:3758–3793 340
Gneiting T, Asher J, Carriquiry A, Davis R, Dawid AP, Efron B, Haberman S, Kou S, Newton M, Paddock S, Prewitt K, Raftery A, Stein M, Straf M (2018). Special section in memory of Stephen E. Fienberg (1942–2016). AOAS Editor-in-Chief 2013–2015., Annals of Applied Statistics, 12:iii–x 341
Pantillon F, Lerch S, Knippertz P, Corsmeier U (2018). Forecasting wind gusts in winter storms using a calibrated convection-permitting ensemble, Quarterly Journal of the Royal Meteorological Society, 144:1864–1881 342
Rasp S, Lerch S (2018). Neural networks for postprocessing ensemble weather forecasts, Monthly Weather Review, 146:3885–3900 343
Vogel P, Knippertz P, Fink AH, Schlueter A, Gneiting T (2018). Skill of global raw and postprocessed ensemble predictions of rainfall over northern tropical Africa, Weather and Forecasting, 33:369–388 344
Ehm W, Ovcharov E (2017). Bias-corrected score decomposition for generalized quantiles, Biometrika, 104:473-480 223
Gneiting T (2017). When is the mode functional the Bayes classifier?, Stat, 6:204-206 225
Hemri S, Klein B (2017). Analog-based postprocessing of navigation-related hydrological ensemble forecasts, Water Resources Research, 53:9059-9077 226
Lerch S, Baran S (2017). Similarity-based semilocal estimation of post-processing models, Journal of the Royal Statistical Society Series: Applied Statistics, 66, :29-51 228
Lerch S, Thorarinsdottir TL, Ravazzolo F, Gneiting T (2017). Forecaster’s dilemma: Extreme events and forecast evaluation, Statistical Science, 32:106-127 229
Schmidt P (2017). Discussion of “Elicitability and backtesting: Perspectives for banking regulation”, Annals of Applied Statistics, 11:1883-1885 230
Ehm W, Gneiting T, Jordan A, Krueger F (2016). Of quantiles and expectiles: Consistent scoring functions, Choquet representations and forecast rankings (with discussion and reply), Journal of the Royal Statistical Society Series: Statistical Methodology, 78:505-562 49
Baran S, Lerch S (2016). Mixture EMOS models for calibrating ensemble forecasts of wind speed, Environmetrics, 27:116-130 128
Ehm W (2016). Reproducibility from the perspective of meta-analysis, In Reproducibility: Principles, Problems, Practices, and Prospects, pp. 141-167, Eds: Atmanspacher, H. and Maasen, S., Wiley, Hoboken 129
Ehm W, Wackermann J (2016). Geometric-optical illusions and Riemannian geometry, Journal of Mathematical Psychology, 71:28-38 130
Hemri S, Haiden T, Pappenberger F (2016). Discrete post-processing of total cloud cover ensemble forecasts, Monthly Weather Review, 144:2565-2577 136
Krüger F, Nolte I (2016). Disagreement versus uncertainty: Evidence from distribution forecasts, Journal of Banking & Finance, 72:S172-S186 138
Schefzik R (2016). A similarity-based implementation of the Schaake shuffle, Monthly Weather Review, 144:1909-1921 141
Schefzik R (2016). Combining parametric low-dimensional ensemble postprocessing with reordering methods, Quarterly Journal of the Royal Meteorological Society, 142:2463-2477 142
Fissler T, Ziegel JF, Gneiting T (2016). Expected shortfall is jointly elicitable with value-at-risk: Implications for backtesting, Risk Magazine, January:58-61 143
2015
Baran S, Lerch S (2015). Log-normal distribution based EMOS models for probabilistic wind speed forecasting, Quarterly Journal of the Royal Meteorological Society, 141:2289-2299 48
Feldmann K, Scheuerer M, Thorarinsdottir TL (2015). Spatial Postprocessing of Ensemble Forecasts for Temperature Using Nonhomogeneous Gaussian Regression, Monthly Weather Review, 143:955-971 50
Hansen L, Thorarinsdottir T, Ovcharov E, Gneiting T, Richards D (2015). Gaussian random particles with flexible Hausdorff dimension, Advances in Applied Probability, 47:307-327 52
Hemri S, Lisniak D, Klein B (2015). Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51:7436-7451 54
Ovcharov E (2015). Existence and uniqueness of proper scoring rules, Journal of Machine Learning Research, 16:2207-2230 55
Schefzik R (2015). Multivariate discrete copulas, with applications in probabilistic weather forecasting, Publications de’l Institut de Statistique de’l Université de Paris, 59:87116 57
Grant K, Gneiting T (2013). Consistent scoring functions for quantiles, From Probability to Statistics and Back: High-Dimensional Models and Processes — A Festschrift in Honor of Jon A. Wellner,pp.163-173,Institute of Mathematical Statistics 1086
Ganster K (2017). Deterministic Forecasts of Binary Events: Comparison of Performance Measures, Faculty of Mathematics, Karlsruhe Institute of Technology, 2017, Tilmann Gneiting(Tutor) 224
Klar M (2017). Statistical Forecasts of Rain Occurrence over West Africa, Faculty of Mathematics, Karlsruhe Institute of Technology, 2017, Tilmann Gneiting(Tutor) 227
2016
Fiedler J (2016). Of Graphs, Dimples, Distances, and Rotations: Linear and Non-linear Dependence Measures for Random Fields, Faculty of Mathematics and Informatics, Ruprecht-Karls University Heidelberg, 2016, Donald Richards(Tutor), Tilmann Gneiting(HITS Tutor) 133
Gräter M (2016). Simulation Study of Dual Ensemble Copula Coupling, Faculty of Mathematics, Karlsruhe Institute of Technology, 2016, Tilmann Gneiting(Tutor), Sebastian Lerch(HITS Tutor) 134
Hemri S (2016). Probabilistic Forecasting Based on Hydrometeorological Ensembles, Faculty of Mathematics, Karlsruhe Institute of Technology, 2016, Uwe Ehret(Tutor), Tilmann Gneiting(HITS Tutor) 135
Jordan A (2016). Facets of Forecast Evaluation, Faculty of Mathematics, Karlsruhe Institute of Technology, 2016, Norbert Henze(Tutor), Tilmann Gneiting(HITS Tutor) 137
Lerch S (2016). Probabilistic Forecasting and Comparative Model Assessment, With Focus on Extreme Events, Faculty of Mathematics, Karlsruhe Institute of Technology, 2016, Thordis Thorarinsdottir, Vicky Fasen-Hartmann(Tutor), Tilmann Gneiting(HITS Tutor) 139
Li L (2016). Assessing Point Forecasts — Economic and Statistical Measures, Faculty of Mathematics, Karlsruhe Institute of Technology, 2016, Tilmann Gneiting(Tutor), Fabian Krüger(HITS Tutor) 140
Here you will find an overview of all cookies used. You can give your consent to entire categories or have further information displayed and thus select only certain cookies.
Cookie von Matomo für Website-Analysen. Erzeugt statistische Daten darüber, wie der Besucher die Website nutzt.
Cookie Name
_pk_*.*
Cookie Expiry
13 Monate
External media (7)
OnOff
Content from video platforms and social media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.