Intrinsically disordered proteins (IDPs) are a new class of proteins that lack secondary and tertiary structures and instead explore a broad conformational ensemble. Their functions, from transcriptional regulation to signal transmission, are rather critical and tightly regulated. To quantitively describe the characteristics of IDP’s conformations is thus of great significance.
However, due to high ratio of charged residues or low ratio of hydrophobic residues, computationally derived ensembles from MD simulations show overcompacted conformers compared to experiment. To this end, we have redefined nonbonded interactions, by either increasing water dispersion forces or adopting the Kirkwood-Buff force field to rescue the IDPs from collapsed conformations [1][2].
Furthermore, IDPs are subject of extensive reversible post-translational modifications (PTMs), such as phosphorylation, methylation and glycosylation. Among these PTMs, phosphorylation is one of the most common and important PTMs. However, the mechanism of how phosphorylation affects the conformations and functions of IDPs remains unclear. To answer this question, we have performed extensive all-atom molecular dynamics simulations for four representative IDPs: Ash1, E-Cadherin, CTD2’ and p130Cas in their unphosphorylated and phosphorylated forms. Our results showed that all IDPs undergo a mild change upon multi-site phosphorylation, which is V-shaped: phosphorylation moderately expands neutral or overall negatively charged IDPs and shrinks positively charged IDPs. More importantly, in two of these IDPs, only two biologically relevant phosphorylation sites suffice to render the adjacent negatively charged active site significantly more exposed to the environment, which implies a higher probability to interact with other binding partners [3].
1. Mercadante D, Milles S, Fuertes G, Svergun DI, Lemke EA, Gräter F. Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields. J Phys Chem B. 2015.
2. Mercadante D, Wagner JA, Aramburu I V., Lemke EA, Gräter F. Sampling Long- versus Short-Range Interactions Defines the Ability of Force Fields to Reproduce the Dynamics of Intrinsically Disordered Proteins. J Chem Theory Comput. 2017.
3. Jin F, Gräter F. How multisite phosphorylation impacts the conformations of intrinsically disordered proteins. PLoS Comp Biol. In revision.
Diese Seite ist nur auf deutsch verfügbar
Zur englischen Seite wechseln oder auf dieser Seite bleiben.
Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell, während andere uns helfen, diese Website und Ihre Erfahrung zu verbessern.
Hier finden Sie eine Übersicht über alle verwendeten Cookies. Sie können Ihre Einwilligung zu ganzen Kategorien geben oder sich weitere Informationen anzeigen lassen und so nur bestimmte Cookies auswählen.
Essenzielle Cookies ermöglichen grundlegende Funktionen und sind für die einwandfreie Funktion der Website erforderlich.
Cookie-Informationen anzeigen Cookie-Informationen ausblenden
Name | |
---|---|
Anbieter | Eigentümer dieser Website |
Zweck | Speichert die Einstellungen der Besucher, die in der Cookie Box von Borlabs Cookie ausgewählt wurden. |
Cookie Name | borlabs-cookie |
Cookie Laufzeit | 1 Jahr |
Statistik Cookies erfassen Informationen anonym. Diese Informationen helfen uns zu verstehen, wie unsere Besucher unsere Website nutzen.
Cookie-Informationen anzeigen Cookie-Informationen ausblenden
Akzeptieren | |
---|---|
Name | |
Anbieter | HITS gGmbH |
Zweck | Cookie von Matomo für Website-Analysen. Erzeugt statistische Daten darüber, wie der Besucher die Website nutzt. |
Cookie Name | _pk_*.* |
Cookie Laufzeit | 13 Monate |
Inhalte von Videoplattformen und Social-Media-Plattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Einwilligung mehr.
Cookie-Informationen anzeigen Cookie-Informationen ausblenden
Akzeptieren | |
---|---|
Name | |
Anbieter | |
Zweck | Wird verwendet, um Facebook-Inhalte zu entsperren. |
Datenschutzerklärung | https://www.facebook.com/privacy/explanation |
Host(s) | .facebook.com |
Akzeptieren | |
---|---|
Name | |
Anbieter | |
Zweck | Wird zum Entsperren von Google Maps-Inhalten verwendet. |
Datenschutzerklärung | https://policies.google.com/privacy |
Host(s) | .google.com |
Cookie Name | NID |
Cookie Laufzeit | 6 Monate |
Akzeptieren | |
---|---|
Name | |
Anbieter | |
Zweck | Wird verwendet, um Instagram-Inhalte zu entsperren. |
Datenschutzerklärung | https://www.instagram.com/legal/privacy/ |
Host(s) | .instagram.com |
Cookie Name | pigeon_state |
Cookie Laufzeit | Sitzung |
Akzeptieren | |
---|---|
Name | |
Anbieter | OpenStreetMap Foundation |
Zweck | Wird verwendet, um OpenStreetMap-Inhalte zu entsperren. |
Datenschutzerklärung | https://wiki.osmfoundation.org/wiki/Privacy_Policy |
Host(s) | .openstreetmap.org |
Cookie Name | _osm_location, _osm_session, _osm_totp_token, _osm_welcome, _pk_id., _pk_ref., _pk_ses., qos_token |
Cookie Laufzeit | 1-10 Jahre |
Akzeptieren | |
---|---|
Name | |
Anbieter | |
Zweck | Wird verwendet, um Twitter-Inhalte zu entsperren. |
Datenschutzerklärung | https://twitter.com/privacy |
Host(s) | .twimg.com, .twitter.com |
Cookie Name | __widgetsettings, local_storage_support_test |
Cookie Laufzeit | Unbegrenzt |
Akzeptieren | |
---|---|
Name | |
Anbieter | Vimeo |
Zweck | Wird verwendet, um Vimeo-Inhalte zu entsperren. |
Datenschutzerklärung | https://vimeo.com/privacy |
Host(s) | player.vimeo.com |
Cookie Name | vuid |
Cookie Laufzeit | 2 Jahre |
Akzeptieren | |
---|---|
Name | |
Anbieter | YouTube |
Zweck | Wird verwendet, um YouTube-Inhalte zu entsperren. |
Datenschutzerklärung | https://policies.google.com/privacy |
Host(s) | google.com |
Cookie Name | NID |
Cookie Laufzeit | 6 Monate |